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SE 412 96 Göteborg, Sweden

E-mail: martin.cederwall@chalmers.se

Abstract: The manifestly supersymmetric pure spinor formulations of the Bagger-

Lambert-Gustavsson models with N = 8 supersymmetry and the Aharony-Bergman-

Jafferis-Maldacena models with N = 6 supersymmetry are given. The structures of the

pure spinors are investigated in both cases, and non-degenerate measures are formed using

non-minimal sets of variables, allowing for the formulation of an action principle.

Keywords: Extended Supersymmetry, Superspaces, Conformal Field Models in String

Theory, BRST Symmetry.

c© SISSA 2008

mailto:martin.cederwall@chalmers.se
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


J
H
E
P
1
0
(
2
0
0
8
)
0
7
0

There has recently been much interest in conformal three-dimensional theories. Following

the discovery of the existence of a maximally supersymmetric (N = 8) interacting theory

of scalar multiplets coupled to Chern-Simons, the Bagger-Lambert-Gustavsson (BLG) the-

ory [1 – 4], much effort has been spent on trying to generalise the construction and to inter-

pret it in terms of an AdS boundary model of multiple M2-branes. The interesting, but re-

strictive, algebraic structure of the model, containing a 3-algebra with antisymmetric struc-

ture constants, turned out to have only one finite-dimensional realisation [5, 6], possible to

interpret in term of two M2-branes [7, 8] (see however refs. [9, 10] dealing with the infinite-

dimensional solution related to volume-preserving diffeomorphisms in three dimensions).

It then became an urgent question how the stringent requirements in the BLG theory

could be relaxed. There are different possibilities. One may let the scalar product on

the matter representation be degenerate [11]. This works at the level of equations of

motion, but does not allow for an action principle. One may also go one step further,

and add further null directions to that degenerate case, which leads to scalar products

with indefinite signature [12 – 14] (and consequently to matter kinetic terms with different

signs). Or, finally, one may reduce the number of supersymmetries, specifically to N = 6,

as proposed by Aharony, Bergman, Jafferis and Maldacena (ABJM) [15], or maybe even

to lower N [16, 17]. The N = 6 models were further studied in refs. [18 – 24] (among other

papers). For recent developments in the theory of multiple membranes, we refer to ref. [25]

and references given there. The literature on the subject is huge, and we apologise for

omissions of references to relevant papers.

The superfield formulation of the BLG model was given in our previous paper [26] (see

also ref. [27], where the on-shell superfields were constructed for the example of the BLG

model based on the infinite-dimensional algebra of volume-preserving diffeomorphisms in

three dimensions). A superfield formulation with N = 1 superfields was given in ref. [28]

and with N = 2 superfields in ref. [29]. In ref. [26] we constructed an action in an N = 8

pure spinor superspace formulation of the BLG model, which covers all situations with

N = 8 above except the ones with degenerate scalar product. The purpose of the present

paper is twofold. Firstly, we construct the corresponding formulation for N = 6 super-

fields, thus covering the ABJM models. These N = 6 models are of course not maximally

supersymmetric, but still more than half-maximally, so the component actions have only

on-shell supersymmetry, which means that appropriate pure spinors are needed. Secondly,

in ref. [26], some aspects of the measure on non-minimal pure spinor space were left out,

and simply assumed to work in a similar way as in D = 10. Here, we remedy this omission

by analysing the pure spinor constraints, adding non-minimal variables in the spirit of

ref. [30] and forming explicit non-degenerate measures, both for N = 8 and N = 6, thus

completing the construction of manifestly supersymmetric actions for the BLG and ABJM

models, which can hopefully be used to improve on quantum calculations [31, 32].

Let us first briefly review the results of ref. [26]. Since the BLG model is maximally

supersymmetric, component formulations and also usual superspace formulations are on-

shell. There is no finite set of auxiliary fields. A pure spinor treatment is necessary in

order to write an action in a generalised BRST setting. (For the use of pure spinors and

pure spinor superspaces in string theory we refer to refs. [33, 34, 30], and in field theory to
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gh# = 1 0 −1 −2 −3

dim = 0 (0)(0000)
1
2 • •

1 • (2)(0000) •
3
2 • • • •

2 • • (2)(0000) • •
5
2 • • • • •

3 • • • (0)(0000) •
7
2 • • • • •

Table 1: The cohomology of the scalar complex.

refs. [35 – 46].) The Lorentz algebra in D = 3 is so(1, 2) ≈ sl(2, R). The N = 8 theory has

an so(8) R-symmetry, and we choose the fermionic coordinates and derivatives to transform

as (2,8s) = (1)(0010) under sl(2) ⊕ so(8). This representation is real and self-conjugate.

The pure spinors transform in the same representation, and are written as λAα, where A is

the sl(2) index and α the so(8) spinor index. As usual, a BRST operator is formed as Q =

λAαDAα, D being the fermionic covariant derivative. The nilpotency of Q demands that

(λAλB) = 0 , (1)

where (. . .) denotes contraction of so(8) spinor indices, since the superspace torsion has to

be projected out. This turns out to be the full constraint.1 These pure spinors are similar

to those encountered in ref. [47]. The “pure spinor wave function” for the Chern-Simons

field is a fermionic scalar Ψ of (mass) dimension 0 and ghost number 1. For the matter

multiplet we have a bosonic field ΦI in the so(8) vector representation (0)(1000) of dimen-

sion 1/2 and ghost number 0. In addition to the pure spinor constraint, the matter field

is identified modulo transformations

ΦI → ΦI + (λAσI̺A) (2)

for arbitrary ̺. In this minimal pure spinor formulation the fields are expanded in power

series in λ, i.e., in decreasing ghost number. The field content (ghosts, fields and their

antifields) are read off from the zero-mode BRST cohomology given in tables 1 and 2 for

the Chern-Simons and matter sectors respectively.

We observe that the field content is the right one. In Ψ we find the ghost, the gauge

connection, its antifield and the antighost. The antifield has dimension 2 (as opposed to

e.g. D = 10 super-Yang-Mills, where it has dimension 3), indicating equations of motion

that are first order in derivatives. In Φ we find the eight scalars φI , the fermions χAα̇

and their antifields. In addition, the field Ψ transforms in the adjoint representation adj of

some gauge group and ΦI in some representation R of the gauge group. The corresponding

indices are suppressed.

1The vanishing of the “torsion representation” — the vector part of the spinor bilinear — is necessary,

but does not always give the full pure spinor constraint. One example where further constraints are needed

is N = 4, D = 4 super-Yang-Mills theory.
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gh# = 0 −1 −2 −3 −4

dim = 1
2 (0)(1000)

1 (1)(0001) •
3
2 • • •

2 • (1)(0001) • •
5
2 • (0)(1000) • • •

3 • • • • •
7
2 • • • • •

Table 2: The cohomology of the vector complex.

In order to derive the equations of motion for the physical component fields, one starts

from the ghost number zero part of the fields ( i.e., ΦI → φI(x, θ) and Ψ → λαAα(x, θ)

respectively), and examines the content of the θ expansion by repeated application of

fermionic covariant derivatives, using the pure spinor constraint and the reducibility (2)

when they occur. As a guideline one has the cohomology at ghost number one; these

representations are the only ones where an equation of motion may sit, for obvious reasons.

In this manner, one derives the linearised component equations ⊓⊔φI = 0, ∂/χA = 0 for the

scalar multiplet, and dA = 0 for the Chern-Simons field, and also the interacting equations

from the actions below.

In ref. [26], it was assumed that a non-degenerate measure can be formed using a non-

minimal extension of the pure spinor variables along the lines of ref. [30]. This measure,

including the three-dimensional integration, should carry dimension 0 and ghost number

−3, and should allow “partial integration” of the BRST charge Q. It was then shown that

the Lagrangian of the interacting model is of a very simple form, containing essentially

a Chern-Simons like term for the Chern-Simons field, minimally coupled to the matter

sector:

L = <Ψ, QΨ +
1

3
[Ψ,Ψ]>adj +

1

2
MIJ<ΦI , QΦJ + Ψ · ΦJ>R . (3)

The brackets denote (non-degenerate) scalar products on adj and R, [·, ·] the Lie bracket

of the gauge algebra and T · x the action of the Lie algebra element in the representation

R. MIJ is the pure spinor bilinear εAB(λAσIJλB), which is needed for several reasons: in

order to contract the indices on the Φ’s antisymmetrically, to get a Lagrangian of ghost

number 3, and to ensure invariance in the equivalence classes defined by eq. (2).

The invariances of the interacting theory, generalising the BRST invariance in the

linearised case, are:

δΨ = QΨ − [Λ,Ψ] − MIJ{Φ
I ,ΞJ} ,

δΦI = −Λ · ΦI + (Q + Ψ·)ΞI , (4)

where Λ is an adjoint boson of dimension 0 and ghost number 0, and ΞI a fermionic vector

in R of dimension 1/2 and ghost number −1. Here we also introduced the bracket {·, ·}

for the formation of an adjoint from the antisymmetric product of two elements in R,

defined via <x, T · y>R = <T, {x, y}>adj. The invariance with parameter Λ is manifest.
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The transformation with Ξ has to be checked. One then finds that the transformation of

the matter field Φ gives a “field strength” contribution from the anticommutator of the

two factors Q + Ψ, which is cancelled against the variation of the Chern-Simons term.

The single remaining term comes from the transformation of the Ψ in the covariant matter

kinetic term, and it is proportional to MIJMKL<{ΦI ,ΦJ}, {ΦK ,ΞL}>adj. Due to the pure

spinor constraint, M[IJMKL] = 0. This was shown in ref. [26], using the simple observation

that the only sl(2) singlet at the fourth power of λ is in the sl(2) ⊕ so(8) representation

(0)(0200) — the four-index antisymmetric tensors (0)(0020) or (0)(0002) do not occur. So

if the structure constants of the 3-algebra defined by <{x, a}, {b, c}>adj = <x, [[a, b, c]]>R

are antisymmetric, this term vanishes. It was also checked that the commutator of two

Ξ-transformations gives a Λ-transformation together with a transformation of the type (2).

Having thus reviewed the results of ref. [26], we would like to do the corresponding

construction for N = 6. The R-symmetry now is so(6) ≈ su(4). We use A1 ⊕A3 notations

for Dynkin labels. The twelve supercharges are in the (quasi-real) representation (1)(010).

The four complex scalar fields should come in (0)(100) (and their conjugates in (0)(001)).

The pure spinor2 is λAαβ = −λAβα, where A = 1, 2, α, β = 1, . . . 4. Later we will equiv-

alently write λ with an so(6) vector index as λAi The general symmetric product of two

“spinors” is ⊕2
s(1)(010) = (0)(101) ⊕ (2)(000) ⊕ (2)(020). The second of these represents

the torsion. We will need to keep the first one for writing the matter lagrangian. The pure

spinor constraint is simply εαβγδλ
AαβλBγδ = 0, or equivalently

λAiλBi = 0 . (5)

It has the same formal structure as in the N = 8 case, only that λ is an so(6) vector instead

of an so(8) vector (after triality rotation).

A scalar wave function has “the same” cohomology as in ref. [26] (in table 1, just

replace (n)(0000) under sl(2)⊕ so(8) with (n)(000) under sl(2)⊕ su(4)). So Chern-Simons

is described in a formally identical manner. The matter multiplet comes as expected from

a bosonic wave function Φα in (0)(100) and in the equivalence class

Φα ≈ Φα + λAαβ̺Aβ . (6)

The cohomology is the right one, shown in table 3.

The field Φα transforms in some representation R of the gauge group, and Φ̄α in

R̄. The matter Lagrangian must again contain two powers of λ through the combination

Mα
β = 1

2εABεαγδελ
AβγλBδε, which is exactly the (0)(101). We write the Lagrangian:

L = <Ψ, QΨ +
1

3
[Ψ,Ψ]>adj + Mα

β<Φα, (Q + Ψ·)Φ̄β>R⊗R̄ (7)

with obvious notation. The generalised BRST invariance now reads

δΨ = QΨ − [Λ,Ψ] − Mα
β{Φα, Ξ̄β} − Mα

β{Ξα, Φ̄β} ,

δΦα = −Λ · Φα + (Q + Ψ·)Ξα ,
(8)

2The representation of the fermionic derivatives and of the λ’s are of course not spinor representations

of the R-symmetry group, only of the Lorentz group. For convenience, we stick to the terminology “spinor”

and “pure spinor” also in this case.
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gh# = 0 −1 −2 −3 −4

dim = 1
2 (0)(100)

1 (1)(001) •
3
2 • • •

2 • (1)(001) • •
5
2 • (0)(100) • • •

3 • • • • •
7
2 • • • • •

Table 3: The cohomology of the N = 6 matter complex.

The “critical term”, as in the N = 8 case, is the one that transforms the Ψ in the matter

Lagrangian under the matter gauge transformation. One gets a term proportional to

Mα
γMβ

δ<{Φα, Φ̄γ}, {Φ
β , Ξ̄δ} + {Ξβ, Φ̄δ}>adj . (9)

Now, the tensor Nαβ
γδ = Mα

γMβ
δ turns out to be traceless and symmetric in (αβ) and

in (γδ), i.e., it transforms in the 84-dimensional representation (0)(202). This is the only

so(1, 2) scalar at λ4 due to the pure spinor constraint. This gives a weaker condition on the

structure constants of the “3-algebra” than in the N = 8 case: antisymmetry in pairs [22],

apart from the structure already assumed. The classification of such algebraic structures

was performed in ref. [23]. It is satisfactory that the structure of the pure spinors in both

cases give the necessary and sufficient algebraic structure by the vanishing of a single term

in the transformations.

In ref. [26], only the minimal pure spinors were considered, and in practice regarded

only as a book-keeping device through the expansion in powers of λ. The existence of a

non-minimal extension of the variables along with a non-degenerate measure was assumed

in order that the action should be well-defined. We will now analyse the pure spinor

constraints for the N = 8 and N = 6 pure spinors, add non-minimal variables and show

how the non-degenerate measures of correct dimension and ghost number arise.

The measure is associated with the singlet cohomology of the antighost in the Chern-

Simons complex. With minimal pure spinor variables, one may prescribe that this compo-

nent of an integrand is picked out, like a residue. Picking out a component at λ3θ3 gives

dimension 3 and ghost number −3, and together with the three-dimensional x-integration

dimension 0 and ghost number −3. This goes well together with the Lagrangians above

having dimension 0 and ghost number 3. Such a “measure” is however degenerate, and can

not be used to form the actions, due to the fact that the fields are expanded in positive

powers of λ only.

A remedy, based on the analogous construction in D = 10 [30], is to introduce further

variables. Not only does the new measure become non-degenerate, it is also defined in

terms of full integrals over all variables, including the θ’s. Let us recall the 10-dimensional

construction. In addition to the pure spinor λα with the constraint (λγaλ) = 0, one has

another bosonic pure spinor µα, with (µγaµ) = 0, of opposite chirality, and a fermionic

spinor rα fulfilling (µγar) = 0. We denote the canonically conjugate variables (derivatives)
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gh# dim

dDx 0 −D

d16θ 0 8

[dλ] 8 −4

[dµ] 8 gh#(µ) 8 dim(µ)

[dr] −11 − 8 gh#(µ) −8 dim(µ)

total −3 −(D − 4)

Table 4: The dimensions and ghost numbers of the D = 10 measure.

to µα and rα by uα and sα, respectively. The new BRST operator is Q = λαDα + uαrα,

and its cohomology is independent of µ and r. Let µ have dimension dim(µ) and ghost

number gh#(µ). Then r has dimension dim(µ) and ghost number 1+gh#(µ). In Euclidean

signature, the pure co-spinor µα can be seen as the complex conjugate of λα.

In D = 10, the pure spinor constraint is reducible, and has 5 independent components,

so a pure spinor has 11 (complex) degrees of freedom. The same thing applies for the

constraint on rα. The antighost singlet cohomology for D = 10 super-Yang-Mills sits at

λ3θ5, and is associated with a Lorentz invariant tensor T(α1α2α3)[β1...β5]. There is of course

a corresponding tensor T̄ (α1α2α3)[β1...β5] with conjugate indices. In ref. [30] this tensor is

used to form an invariant integration measure for the pure spinor λ:

[dλ]λα1λα2λα3 ∼ ⋆T̄α1α2α3

β1...β11
dλβ1 ∧ . . . ∧ dλβ11 , (10)

where ⋆ refers to dualisation in the β indices. We note that a requirement for this to work is

that the number of antisymmetric indices (five) equals the number of irreducible constraints

on the spinor, so that the integral is over the full pure spinor space. The corresponding ex-

pression with conjugate indices holds for the µ integration, and for the r integration we have

[dr] ∼ ⋆T̄α1α2α3

β1...β11
µα1

µα2
µα3

∂

∂rβ1

. . .
∂

∂rβ11

. (11)

Using these integration measures, and the ordinary ones for x and θ, we list the di-

mensions and ghost numbers for the theory after dimensional reduction to D dimensions

in table 4. So, the ghost numbers match, and also the dimensions ( 1
g2 has dimension D− 4

in D dimensions), irrespectively of the assignments of dim(µ) and gh#(µ).

The λ and µ integrations are non-compact and need regularisation. In ref. [30] this

is achieved, following ref. [48], by the insertion of a factor N = e{Q,χ}. Since this differs

from 1 by a Q-exact term, the regularisation is independent of the choice of the fermion

χ. The choice χ = −µαθα gives N = e−λαµα−rαθα

and regularises the bosonic integrations

at infinity. At the same time, it explains how the term at θ5 is picked out, this follows

after integration over r. N has definite ghost number 0 if gh#(µ) = −1 and a dimensionful

constant can be avoided in the regulator if dim(µ) = 1
2 , so that gh#(r) = 0 and dim(r) = 1

2 .

In both the N = 8 and N = 6 theories in D = 3, the näıve measure sits at λ3θ3. In

analogy with the ten-dimensional case, we need the number of irreducible constraints on

the pure spinors to equal the number of θ’s. Indeed, the constraints, which in both cases sit

– 6 –
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in the vector representation of so(1, 2), turn out to be irreducible, which is straightforward

to check. The pure spinor spaces are 13- and 9-dimensional, respectively. In both cases,

the spinor representation is the tensor product of an sl(2) doublet and a vector under an

orthogonal group (in the N = 8 case by triality rotation). Letting λ1 = a+ ib, λ2 = c+ id,

and choosing a set of four orthogonal basis vectors {e1, e2, e3, e4}, the general solution to

the pure spinor constraint can be parametrised as

a = ℓe1 ,

b = ℓe2 ,

c = ℓ′(sin α cos βe1 + sin α sinβe2 + cos αe3) ,

d = ℓ′(− sin α sin βe1 + sin α cos βe2 + cos αe4) . (12)

There are four real parameters, and the stability group of the parametrisation is SO(N −

4) ⊂ SO(N), so the real dimension of pure spinor space is

4 + dim(SO(N)) − dim(SO(N − 4)) = 2(2N − 3) , (13)

again giving (complex) dimensions 13 and 9 for the N = 8 and N = 6 cases, respectively.

We can write the invariant tensors as

εabc(λγaθ)(λγbθ)(λγcθ)

= T(A1α1,A2α2,A3α3)[B1β1,B2β2,B3β3]λ
A1α1λA2α2λA3α3θB1β1θB2β3θB3β3

(14)

in the N = 8 case, and as

εabc(λγaθ)(λγbθ)(λγcθ)

= T(A1i1,A2i2,A3i3)[B1j1,B2j2,B3j3]λ
A1i1λA2i2λA3i3θB1j1θB2j3θB3j3

(15)

in the N = 6 case (where in both cases the spinor contractions include the sl(2) index, and

γa are 3-dimensional γ-matrices). The integration measure for a single N = 8 pure spinor

is then

[dλ]λA1α1λA2α2λA3α3 ∼ ⋆TA1α1,A2α2,A3α3

B1β1,...,B13β13
dλB1β1 ∧ . . . ∧ dλB13β13 , (16)

and for an N = 6 pure spinor

[dλ]λA1i1λA2i2λA3i3 ∼ ⋆TA1i1,A2i2,A3i3
B1j1,...,B9j9dλB1j1 ∧ . . . ∧ dλB9j9 . (17)

The same expressions apply for the µ integrations, since the “spinor” representations in

both cases are self-conjugate. For the r integrations we have

[dr] ∼ ⋆TA1α1,A2α2,A3α3

B1β1,...,B13β13
µA1α1

µA2α2
µA3α3

∂

∂rB1β1

. . .
∂

∂rB13β13

(18)

and

[dr] ∼ ⋆TA1i1,A2i2,A3i3
B1j1,...,B9j9µA1i1µA2i2µA3i3

∂

∂rB1j1

. . .
∂

∂rB9j9

(19)
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N = 8 N = 6

gh# dim gh# dim

d3x 0 −3 0 −3

[dθ] 0 8 0 6

[dλ] 10 −5 6 −3

[dµ] −10 5 −6 3

[dr] −3 −5 −3 −3

total −3 0 −3 0

Table 5: The dimensions and ghost numbers of the N = 8 and N = 6 measures.

respectively. Let us examine the dimensions and ghost numbers of the total measures. The

analogies of table 4, with gh#(µ) = −1 and dim(µ) = 1
2 , is given in table 5.

In both cases we get a non-degenerate measure of dimension 0 and ghost number −3,

as desired for a conformal theory. Also here, the measures of course have to be regularised

in the same way as in ref. [30]. We insert a factor N = e{Q,χ}, where χ = −µAαθAα for

N = 8, and χ = −µiαθiα for N = 6.

To conclude, we have extended our previous manifestly supersymmetric formulation

of the N = 8 BLG models to the N = 6 ABJM models. We have also performed a

detailed analysis of the pure spinor constraints and provided proper actions based on non-

degenerate measures on non-minimal pure spinor spaces. We hope that these formulations

may be helpful in the future, e.g. for the investigation of quantum properties of the models.
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